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Received 26 February 1975 

Abstract. A configurational proof IS given that at high enough temperatures the triplet 
model on the triangular lattice has zero spontaneous magnetization. On the face-centred 
cubic lattice the spontaneous magnetization IS shown to be nonzero for all finite tem- 
peratures. This seems to imply the absence of a phase transition of the conventional type 
in zero field. 

A great deal of interest has recently been shown iI.r models of magnetic systems with 
multispin interactions. In this letter we consider one of these models, the triplet model, 
in which the interaction energy is the product of the spin variables at the vertices of 
triangles of the lattice. We concentrate on the triangular and face-centred cubic (FCC) 
lattices, referring to work on other lattices when appropriate. 

For each of these models we investigate the occurrence at high temperatures of a 
zero-field magnetization. Merlini et a1 (1973) have shown that the triangular lattice 
triplet model has a nonzero spontaneous magnetization at sufficiently low temperatures 
and have given a lower bound for the critical temperature. We have found it worth- 
while to use configurational arguments to investigate the high-temperature region. 

Our results contradict one of the basic assumptions made by Wood and Griffiths 
(1974a,b) and Griffiths and Wood (1973, 1974) in analysing their low-temperature 
series. They implicitly assume that the magnetization goes to zero as (T,  - This 
assumption is invalid on the FCC lattice with triplet interactions. It remains invalid if 
non-negative two-spin and four-spin interactions are added. The assumption is also 
invalid on the triangular lattice if triplet interactions are combined with positive two- 
spin interactions. For the body-centred cubic (BCC) lattice with first and second nearest- 
neighbour bonds the same results as for the FCC lattice are true. For each of the above 
models similar comments apply to the assumption that the magnetization goes to 
zero as H''' along the critical isotherm. 

We consider pure triplet interactions of strength J ,  on the triangular lattice and 
expand the logarithm of the partition function, In Z ,  about T = m as a power series in 
the high-temperature variables t' ( =  tanh J J k T )  and 5 (= tanh m H / k T ) .  The coefficient 
of U"T' corresponds to the number of weak embeddings (Sykes et a1 1966) in the lattice 
of a configuration containing n triangles with r odd vertices: an odd vertex is here 
defined as a vertex that is common to an odd number of triangles. The high-temperature 
spontaneous magnetization is given by 
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Hence to show that the magnetization is zero we need to show that no configurations 
with exactly one odd vertex are embeddable in the lattice. We divide the lattice into 
three sublattices A, B, C as shown in figure l(a). Note that any elementary triangle has 
one vertex on each of the sublattices. We now show that a graph containing an odd 
(even) number of triangles has an odd (even) number of odd vertices on each sublattice. 

( a  1 ( b )  

Figure 1. Three-sublattice division for: (a )  the triangular lattice; (b)  the Union Jack lattice. 

This is obviously true for n = 1 and addition of a triangle to any graph changes the 
number of odd vertices on each sublattice by f 1 : hence it is true for all n by induction. 
Since three positive integers, all odd or all even, cannot sum to unity, we conclude that 
no graph may contain exactly one odd vertex. This result of a vanishing high-tem- 
perature magnetization is indicated by the work of Merlini et a1 (1973) and by the 
complete expression for a spontaneous magnetization vanishing at T,, proposed by 
Baxter et al(1975). 

The above proof applies, using the sublattice division of figure l(b), to the Union 
Jack lattice triplet model whose free energy was obtained by Hinterman and Merlini 
(1972). 

We cannot however obtain an appropriate three-sublattice division of the FCC 
lattice and in fact there are configurations with only one odd vertex (figure 2). This 
indicates that the magnetization does not vanish and suggests the absence of a phase 
transition. 

A 
* 

Figure 2. The graphs containing three triangles and one odd vertex which are embeddable 
in the FCC lattice. The odd vertex is indicated by the asterisk. 
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The connection between the occurrence of a phase transition and the possibility of 
a three-sublattice division is also suggested by symmetry arguments. If the three-sub- 
lattice division is possible then the zero-field free energy is unchanged by reversing the 
signs of all spins on two of the sublattices. This can be done in three ways so that the 
H = O  line is a line of quadruple points terminating at a critical point. On the FCC 

lattice however there is a unique ground state. It appears that the possibility of a phase 
transition associated with a spontaneous symmetry breaking is precluded by the lack 
of symmetry. 

In fact for the FCC lattice the presence of configurations such as those in figure 2 
means that we can place a rigorous, nonzero, lower bound on the spontaneous magnetiza- 
tion. We consider a single tetrahedron, simplex S , ,  as a finite cluster. This contains 
the graph of figure 2(a) and we calculate the zero-field spin expectation value of the 
cluster as 

Tr(a, exp( -/W))/Tr(exp( -8X)) = r 3 .  

Since all the interactions are positive we can use Griffiths’ (1967) second inequality, as 
generalized by Kelly and Sherman (1968), which states that all spin expectation values 
are non-decreasing functions of interaction strengths. 

For any particular spin its expectation value for a given set of interactions will be 
bounded below by the expectation value obtained for a subset of these interactions. 
For a homogeneous lattice we can equate any spin expectation value to the magnetiza- 
tion. For the FCC lattice the magnetization is bounded below by c3. the expectation 
value of a spin on an isolated tetrahedron. 

Improved bounds can be found by taking larger subsystems of the FCC lattice. 
Considering a cluster x of four tetrahedra, meeting only at vertex A, leads to 

Z F c c  m = (0,) 3 (a,), = 4(r3+r9) / / (1+6r2+r12) .  

These bounds will also apply to the BCC lattice with triplet interactions around 
triangles of two nearest-neighbour bonds, and a second-neighbour bond. The bounds 
also apply when positive two-spin and four-spin interactions are added to these triplet 
interactions. In this case however it is easy to obtain better bounds than those above. 
Even on the Union Jack and triangular lattices systems with mixed two-spin and three- 
spin interactions will have nonzero magnetization in zero field. 

In systems with two-spin interactions only along a subset of bonds the lattice may 
be inhomogeneous and the magnetization may not be the appropriate order parameter. 
Symmetry arguments like those above can be useful in understanding the behaviour of 
such complicated systems and in determining an appropriate order parameter, We 
have not been able to find any alternative order parameter for BCC and FCC triplet models 
and so we believe that, not only do our magnetization bounds invalidate the magnetiza- 
tion analysis of Wood and Griffiths (1974a,b) and Griffiths and Wood (1974), but that 
our bounds also strongly suggest the absence of any phase transition of the conventional 
type in zero field for BCC and FCC triplet models. We cannot completely exclude the 
possibility of phase transitions of a more general type than that implied by the analysis 
of Wood and Griffiths, but it seems more probable that any transitions that do occur 
do so only in negative field. 

We are grateful to Dr M F Sykes for initiating this work and to Professor C Domb, 
Dr M F Sykes and Dr J L Martin for their useful comments. This work has been 
supported through research grants from the SRC. 
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